A293320 Least integer k such that k/2^n > tau^2, where tau = (1+sqrt(5))/2 = golden ratio.
3, 6, 11, 21, 42, 84, 168, 336, 671, 1341, 2681, 5362, 10724, 21447, 42894, 85788, 171576, 343151, 686302, 1372604, 2745208, 5490416, 10980831, 21961661, 43923322, 87846644, 175693287, 351386574, 702773148, 1405546296, 2811092591, 5622185181, 11244370362
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[Ceiling((2^n*(3+Sqrt(5)))/2): n in [0..33]]; // Vincenzo Librandi, Oct 08 2017
-
Mathematica
z = 120; r = 1+GoldenRatio; Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *) Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *) Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
Formula
a(n) = ceiling(r*2^n), where r = (3+sqrt(5))/2.
a(n) = A293319(n) + 1.