A293356 Even integers k such that lambda(sum of even divisors of k) = sum of odd divisors of k.
2, 20, 40, 48, 68, 176, 212, 304, 328, 944, 1360, 1712, 1888, 2320, 2344, 2864, 4240, 7120, 7888, 7984, 8448, 8960, 11920, 12032, 14416, 14592, 15536, 17492, 20224, 21520, 23984, 24208, 24592, 25904, 26112, 28160, 29440, 30464, 34560, 35920, 36352, 40528, 41296
Offset: 1
Keywords
Examples
68 is in the sequence because A002322(A146076(68)) = A002322(108) = 18 and A000593(68) = 18.
Links
- Robert Israel, Table of n, a(n) for n = 1..738
Programs
-
Maple
with(numtheory): for n from 2 by 2 to 10^6 do: x:=divisors(n):n1:=nops(x):s0:=0:s1:=0: for k from 1 to n1 do: if type(x[k],even) then s0:=s0+ x[k]: else s1:=s1+ x[k]: fi: od: if s1=lambda(s0) then printf(`%d, `,n): else fi: od:
-
Mathematica
fQ[n_] := Block[{d = Divisors@n}, CarmichaelLambda[Plus @@ Select[d, EvenQ]] == Plus @@ Select[d, OddQ]]; Select[2 Range@2000, fQ] (* Robert G. Wilson v, Oct 07 2017 *)
-
PARI
is(n)=if(n%2, return(0)); my(s=valuation(n,2),d=sigma(n>>s)); lcm(znstar(d*(2^(s+1)-2))[2])==d \\ Charles R Greathouse IV, Dec 26 2017
Extensions
Edited by Robert Israel, Dec 28 2017
Comments