A293358 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 8, 16, 30, 53, 92, 155, 258, 425, 696, 1135, 1846, 2998, 4862, 7879, 12761, 20661, 33444, 54128, 87596, 141749, 229371, 371147, 600546, 971722, 1572299, 2544053, 4116385, 6660472, 10776892, 17437400, 28214329, 45651767, 73866135, 119517942
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) = 8; Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A293358 *) Table[b[n], {n, 0, 10}]
Comments