A293366 Number of partitions of n where each part i is marked with a word of length i over a binary alphabet whose letters appear in alphabetical order and both letters occur at least once in the partition.
3, 12, 40, 104, 279, 654, 1577, 3560, 8109, 17734, 39205, 83996, 181043, 382856, 811084, 1694468, 3545864, 7340308, 15205768, 31259422, 64253260, 131314502, 268332975, 545854344, 1110087515, 2250051262, 4558868119, 9213241988, 18613362500, 37529700206
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Crossrefs
Column k=2 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): seq(a(n), n=2..35);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k] Binomial[i + k - 1, k - 1]]]]; a[n_] := With[{k = 2}, Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[2, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 2^n, where c = A256155 = 18.563146563610114727475354232269284... - Vaclav Kotesovec, Oct 11 2017