cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293366 Number of partitions of n where each part i is marked with a word of length i over a binary alphabet whose letters appear in alphabetical order and both letters occur at least once in the partition.

Original entry on oeis.org

3, 12, 40, 104, 279, 654, 1577, 3560, 8109, 17734, 39205, 83996, 181043, 382856, 811084, 1694468, 3545864, 7340308, 15205768, 31259422, 64253260, 131314502, 268332975, 545854344, 1110087515, 2250051262, 4558868119, 9213241988, 18613362500, 37529700206
Offset: 2

Views

Author

Alois P. Heinz, Oct 07 2017

Keywords

Crossrefs

Column k=2 of A261719.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
        end:
    a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(2):
    seq(a(n), n=2..35);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k] Binomial[i + k - 1, k - 1]]]];
    a[n_] := With[{k = 2}, Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
    a /@ Range[2, 35] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)

Formula

a(n) ~ c * 2^n, where c = A256155 = 18.563146563610114727475354232269284... - Vaclav Kotesovec, Oct 11 2017