A293367 Number of partitions of n where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order and all three letters occur at least once in the partition.
10, 81, 396, 1751, 6528, 23892, 80979, 272085, 876342, 2821217, 8840964, 27713589, 85532512, 263935014, 806417553, 2464692788, 7483544643, 22727335830, 68734242687, 207887123472, 627024671262, 1891376241178, 5694616254570, 17146333061406, 51564199968339
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(3): seq(a(n), n=3..30);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k] Binomial[i + k - 1, k - 1]]]]; a[n_] := With[{k = 3}, Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[3, 30] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 3^n, where c = 6.846206073498521357898163368676070142316815386135993166380819930419737... - Vaclav Kotesovec, Oct 11 2017