A293368 Number of partitions of n where each part i is marked with a word of length i over a quaternary alphabet whose letters appear in alphabetical order and all four letters occur at least once in the partition.
47, 544, 4232, 25100, 136516, 666800, 3142884, 14024256, 61637303, 262474700, 1109010890, 4603058016, 19018730793, 77751623552, 317106002688, 1284961711836, 5199893190893, 20961427995916, 84431958561230, 339292817869492, 1362880886322817, 5466605564267372
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=4 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(4): seq(a(n), n=4..30);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k] Binomial[i + k - 1, k - 1]]]]; a[n_] := With[{k = 4}, Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[4, 30] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 4^n, where c = 4.90673361196637084263021203165784685586076564592828337755053385514766785... - Vaclav Kotesovec, Oct 11 2017