A293369 Number of partitions of n where each part i is marked with a word of length i over a quinary alphabet whose letters appear in alphabetical order and all five letters occur at least once in the partition.
246, 4350, 44475, 369675, 2603670, 16993932, 102603315, 598010585, 3339393990, 18294499370, 97818690363, 517148440820, 2694756962105, 13947673300505, 71555207694490, 365571598248050, 1857609632705200, 9414446265923035, 47553294423090160, 239799029393392505
Offset: 5
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1000
Crossrefs
Column k=5 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(5): seq(a(n), n=5..30);
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k] Binomial[i + k - 1, k - 1]]]]; a[n_] := With[{k = 5}, Sum[b[n, n, k-i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[5, 30] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * 5^n, where c = 4.1548340497015786311470026968208254860294132084317763408428889184148319... - Vaclav Kotesovec, Oct 11 2017