A293370 Number of partitions of n where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order and all six letters occur at least once in the partition.
1602, 36744, 512787, 5413842, 49654380, 405769740, 3112631737, 22474141722, 156807714204, 1057029675170, 6981434207532, 45160469355996, 288451275981963, 1818548589385302, 11371801475805417, 70522341255530382, 434990774484893184, 2668650839230709592
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Crossrefs
Column k=6 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(6): seq(a(n), n=6..30);
Formula
a(n) ~ c * 6^n, where c = 3.760725122262068858184072984846959348360490081749654779894152320389687335... - Vaclav Kotesovec, Oct 11 2017