A293372 Number of partitions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order and all eight letters occur at least once in the partition.
95503, 3641992, 80387608, 1322729896, 18385756520, 225257353792, 2541255024732, 26777904754008, 269047552566188, 2594409873644384, 24281765931659608, 221357827678662984, 1978440640155108276, 17375505823280757968, 150542570789825846856, 1288702165811231618744
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..1000
Crossrefs
Column k=8 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(8): seq(a(n), n=8..30);
Formula
a(n) ~ c * 8^n, where c = 3.3565128773700137140303140039343582841894554205106317247... - Vaclav Kotesovec, Oct 11 2017