A293373 Number of partitions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all nine letters occur at least once in the partition.
871030, 41488902, 1106315145, 22148014950, 366764207877, 5369282570448, 71433531608103, 887892874465104, 10433233718235522, 117558189248146187, 1278057588056171991, 13515236446777067727, 139538852470920866367, 1413457490580676488090, 14081562892529164704060
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..1000
Crossrefs
Column k=9 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(9): seq(a(n), n=9..30);
Formula
a(n) ~ c * 9^n, where c = 3.23950351986835655716873222462341048089067679826... - Vaclav Kotesovec, Oct 11 2017