A293374 Number of partitions of n where each part i is marked with a word of length i over a denary alphabet whose letters appear in alphabetical order and all ten letters occur at least once in the partition.
8879558, 507478240, 16328012830, 386564408490, 7585143426265, 129920818441752, 2021599595359635, 29144953777135120, 396700415630121560, 5147755142273696760, 64343348623810658670, 779040642478793472040, 9192718895981030349425, 106097174229823135572590
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..1000
Crossrefs
Column k=10 of A261719.
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) end: a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(10): seq(a(n), n=10..30);
Formula
a(n) ~ c * 10^n, where c = 3.1513858636401513585013047835048959202713435... - Vaclav Kotesovec, Oct 11 2017