cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293383 Decimal expansion of Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).

Original entry on oeis.org

3, 9, 2, 7, 7, 1, 5, 7, 5, 5, 5, 5, 0, 6, 7, 5, 1, 1, 8, 5, 9, 1, 1, 1, 8, 7, 7, 2, 6, 1, 2, 2, 8, 0, 9, 1, 3, 4, 2, 7, 2, 3, 4, 4, 9, 0, 4, 2, 2, 6, 3, 4, 8, 6, 2, 0, 2, 3, 8, 8, 3, 4, 3, 8, 7, 3, 1, 7, 5, 1, 9, 7, 9, 9, 7, 0, 9, 7, 5, 9, 1, 8, 4, 9, 7, 0, 7, 2, 1, 8, 1, 6, 3, 4, 7, 6, 2, 4, 5, 5, 1, 3, 2, 1, 8, 9, 6, 7, 0, 1, 3, 5, 2, 4, 8, 6, 2, 6, 6, 3
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2017

Keywords

Comments

This constant plus A293384 equals log(3), due to the identity:
Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 2/3, y = 1/2.

Examples

			Constant t = 0.3927715755550675118591118772612280913427234490422634862023883438....
such that
t = (2^2 - 3)/(1*3*2) + (2^3 - 3)^2/(2*3^2*2^4) + (2^4 - 3)^3/(3*3^3*2^9) + (2^5 - 3)^4/(4*3^4*2^16) + (2^6 - 3)^5/(5*3^5*2^25) + (2^7 - 3)^6/(6*3^6*2^36) + (2^8 - 3)^7/(7*3^7*2^49) + (2^9 - 3)^8/(8*3^8*2^64) + (2^10 - 3)^9/(9*3^9*2^81) +...+ (2^(n+1) - 3)^n/(n * 3^n * 2^(n^2)) +...
More explicitly,
t = 1/(1*3*2) + 5^2/(2*9*2^4) + 13^3/(3*27*2^9) + 29^4/(4*81*2^16) + 61^5/(5*243*2^25) + 125^6/(6*729*2^36) + 253^7/(7*2187*2^49) + 509^8/(8*6561*2^64) + 1021^9/(9*19683*2^81) + 2045^10/(10*59049*2^100) + 4093^11/(11*177147*2^121) + 8189^12/(12*531441*2^144) +...
Also,
log(3) - t = 3/(1*2*(3-1)) - 3^2/(2*4*(3*2-1)^2) + 3^3/(3*8*(3*2^2-1)^3) - 3^4/(4*16*(3*2^3-1)^4) + 3^5/(5*32*(3*2^4-1)^5) - 3^6/(6*64*(3*2^5-1)^6) + 3^7/(7*128*(3*2^6-1)^7) +...+ -(-1)^n*3^n/(n*2^n*(3*2^(n-1) - 1)^n) +...
		

Crossrefs

Programs

  • PARI
    {t = suminf(n=1, 1.*(2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)) )}
    for(n=1,120, print1(floor(10^n*t)%10,", "))

Formula

Constant: Sum_{n>=1} (2^(n+1) - 3)^n / (n * 3^n * 2^(n^2)).
Constant: log(3) - Sum_{n>=1} -(-1)^n * 3^n / (n * 2^n * (3*2^(n-1) - 1)^n).