A293400 Greatest integer k such that k/n^2 < (1 + sqrt(5))/2 (the golden ratio).
0, 1, 6, 14, 25, 40, 58, 79, 103, 131, 161, 195, 232, 273, 317, 364, 414, 467, 524, 584, 647, 713, 783, 855, 931, 1011, 1093, 1179, 1268, 1360, 1456, 1554, 1656, 1762, 1870, 1982, 2096, 2215, 2336, 2461, 2588
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Felipe Gonçalves, Diogo Oliveira e Silva, João P. G. Ramos, New Sign Uncertainty Principles, arXiv:2003.10771 [math.CA], 2020.
Programs
-
Magma
[Floor((1 + Sqrt(5))/2*n^2) : n in [0..80]]; // Wesley Ivan Hurt, Jul 03 2020
-
Mathematica
z = 120; r = GoldenRatio; Table[Floor[r*n^2], {n, 0, z}]; (* A293400 *) Table[Ceiling[r*n^2], {n, 0, z}]; (* A293401 *) Table[Round[r*n^2], {n, 0, z}]; (* A293402 *)
Formula
a(n) = floor(r*n^2), where r = (1 + sqrt(5))/2.
a(n) = A293401(n) - 1 for n > 0.