A293406 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
1, 3, 9, 18, 34, 60, 103, 174, 289, 476, 779, 1270, 2065, 3352, 5435, 8807, 14263, 23092, 37378, 60494, 97897, 158417, 256341, 414786, 671156, 1085972, 1757159, 2843163, 4600355, 7443552, 12043943, 19487532, 31531513, 51019084, 82550637, 133569762
Offset: 0
Examples
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that a(2) = a(1) + a(0) + b(1) + 1 = 8; Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, ...)
Links
- Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Programs
-
Mathematica
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 1; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 40}] (* A293406 *) Table[b[n], {n, 0, 10}]
Comments