A293424 Hamming distance between two consecutive semiprimes.
1, 4, 2, 1, 1, 3, 2, 4, 2, 5, 2, 1, 2, 1, 2, 5, 1, 1, 3, 2, 1, 7, 1, 4, 3, 5, 3, 2, 1, 2, 2, 2, 1, 4, 2, 3, 2, 1, 3, 2, 1, 6, 1, 2, 3, 2, 1, 4, 2, 2, 2, 1, 5, 3, 4, 2, 2, 2, 3, 1, 5, 3, 2, 1, 2, 2, 5, 1, 2, 1, 3, 2, 1, 2, 6, 2, 2, 3, 3, 1, 2, 8, 2, 4, 1, 3, 1, 2, 5, 1, 1, 3, 1, 2, 2, 1, 4, 1, 4, 2, 6, 1, 2, 1, 3
Offset: 1
Examples
a(1) = 1 because the semiprimes 4 & 6, 100_2 & 110_2 have a Hamming distance of 1; a(2) = 4 because the semiprimes 6 & 9, 110_2 & 1001_2 have a Hamming distance of 4; a(3) = 2 because the semiprimes 9 & 10, 1001_2 & 1010_2 have a Hamming distance of 2; etc.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
semiprimes:= select(t -> numtheory:-bigomega(t)=2, [$4..1023]): L:=map(t -> convert(t+1024,base,2), semiprimes): map(t -> 11 - numboccur(0,t), L[2..-1]-L[1..-2]); # Robert Israel, Oct 08 2017 # alternative read("transforms") : A293424 := proc(n) local s1,s2 ; s1 := A001358(n) ; s2 := A001358(n+1) ; XORnos(s1,s2) ; wt(%) ; end proc: # R. J. Mathar, Jan 06 2018
-
Mathematica
Count[ IntegerDigits[ BitXor[ #[[1]], #[[2]]], 2], 1] & /@ Partition[ Select[ Range@330, PrimeOmega@# == 2 &], 2, 1]
-
PARI
lista(nn) = my(v = select(x->bigomega(x)==2, vector(nn, k, k))); vector(#v-1, k, norml2(binary(bitxor(v[k], v[k+1])))); \\ Michel Marcus, Oct 11 2017
Comments