A293434 a(n) is the sum of the proper divisors of n that are Jacobsthal numbers (A001045).
0, 1, 1, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 12, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 15, 1, 6, 4, 1, 1, 4, 6, 1, 25, 1, 12, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 17, 1, 4, 1, 1, 9, 1, 1, 25, 1, 6, 15, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 12, 4, 1, 6, 4, 1, 1, 25, 6, 44, 4, 12, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 15, 6, 1, 4, 1, 1, 30
Offset: 1
Keywords
Examples
For n = 15, whose proper divisors are [1, 3, 5], all of them are in A001045, thus a(15) = 1 + 3 + 5 = 9. For n = 21, whose proper divisors are [1, 3, 7], both 1 and 3 are in A001045, thus a(21) = 1 + 3 = 4. For n = 21845, whose proper divisors are [1, 5, 17, 85, 257, 1285, 4369], only 1, 5, 85 are in A001045, thus a(21845) = 1 + 5 + 85 = 91.
Links
Programs
-
Mathematica
With[{s = LinearRecurrence[{1, 2}, {0, 1}, 24]}, Table[DivisorSum[n, # &, And[MemberQ[s, #], # != n] &], {n, 105}]] (* Michael De Vlieger, Oct 09 2017 *)
-
PARI
A147612aux(n,i) = if(!(n%2),n,A147612aux((n+i)/2,-i)); A147612(n) = 0^(A147612aux(n,1)*A147612aux(n,-1)); A293434(n) = sumdiv(n,d,(d
A147612(d)*d); -
Python
from sympy import divisors def A293434(n): return sum(d for d in divisors(n,generator=True) if d
(m-3).bit_length()) # Chai Wah Wu, Apr 18 2025