cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293442 Multiplicative with a(p^e) = A019565(e).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 6, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 12, 3, 4, 6, 6, 2, 8, 2, 10, 4, 4, 4, 9, 2, 4, 4, 12, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 12, 4, 12, 4, 4, 2, 12, 2, 4, 6, 15, 4, 8, 2, 6, 4, 8, 2, 18, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 12, 2, 12, 4, 6, 4, 4, 4, 20, 2, 6, 6, 9, 2, 8, 2, 12, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2017

Keywords

Comments

From Peter Munn, Apr 06 2021: (Start)
a(n) is determined by the prime signature of n.
Compare with the multiplicative, self-inverse A225546, which also maps 2^e to the squarefree number A019565(e). However, this sequence maps p^e to the same squarefree number for every prime p, whereas A225546 maps the e-th power of progressively larger primes to progressively greater powers of A019565(e).
Both sequences map powers of squarefree numbers to powers of squarefree numbers.
(End)

Crossrefs

Sequences used in a definition of this sequence: A000188, A003961, A019565, A028234, A059895, A067029, A162642.
Sequences with related definitions: A225546, A293443, A293444.
Cf. also A293214.
Sequences used to express relationship between terms of this sequence: A006519, A007913, A008833, A064989, A334747.
Sequences related via this sequence: (A001222, A048675, A064547), (A007814, A162642), (A087207, A267116), (A248663, A268387).

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Apply[Times, Prime@ Flatten@ Position[Reverse@ IntegerDigits[Last@ #, 2], 1]] * f[n/Apply[Power, #]] &@ FactorInteger[n][[1]]]; Array[f, 105] (* Michael De Vlieger, Oct 31 2017 *)

Formula

a(1) = 1; for n > 1, a(n) = A019565(A067029(n)) * a(A028234(n)).
Other identities. For all n >= 1:
a(a(n)) = A293444(n).
A048675(a(n)) = A001222(n).
A001222(a(n)) = A064547(n) = A048675(A293444(n)).
A007814(a(n)) = A162642(n).
A087207(a(n)) = A267116(n).
A248663(a(n)) = A268387(n).
From Peter Munn, Mar 14 2021: (Start)
Alternative definition: a(1) = 1; a(2) = 2; a(n^2) = A003961(a(n)); a(A003961(n)) = a(n); if A059895(n, k) = 1, a(n*k) = a(n) * a(k).
For n >= 3, a(n) < n.
a(2n) = A334747(a(A006519(n))) * a(n/A006519(n)), where A006519(n) is the largest power of 2 dividing n.
a(2n+1) = a(A064989(2n+1)).
a(n) = a(A007913(n)) * a(A008833(n)) = 2^A162642(n) * A003961(a(A000188(n))).
(End)