A293450 Restricted growth sequence transform of (3*A293225(n) + A010872(n)), a filter combining (n mod 3) with two products, the other formed from the 1-digits (A293221) and the other from the 2-digits (A293222) present in the ternary expansions of proper divisors of n.
1, 2, 3, 4, 2, 5, 6, 7, 8, 9, 2, 10, 6, 11, 12, 13, 2, 14, 6, 15, 16, 17, 2, 18, 19, 20, 21, 22, 2, 23, 6, 24, 25, 26, 27, 28, 6, 29, 30, 31, 2, 32, 6, 33, 34, 35, 2, 36, 37, 38, 14, 39, 2, 40, 41, 42, 43, 44, 2, 45, 6, 46, 47, 48, 49, 50, 6, 51, 52, 53, 2, 54, 6, 55, 56, 57, 58, 59, 6, 60, 61, 62, 2, 63, 64, 65, 66, 67, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..59049
Programs
-
PARI
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler A289813(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==1, 1, 0)), 2); }; A289814(n) = { my (d=digits(n, 3)); from digits(vector(#d, i, if (d[i]==2, 1, 0)), 2); }; A293221(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289813(d)))); m; }; A293222(n) = { my(m=1); fordiv(n,d,if(d < n,m *= A019565(A289814(d)))); m; }; Anot_submitted(n) = (1/2)*(2 + ((A293222(n) + A293221(n))^2) - A293222(n) - 3*A293221(n)); \\ Eq.class-wise equal to A293225. Anot2submitted(n) = ((3*Anot_submitted(n))+(n%3)); write_to_bfile(1,rgs_transform(vector(59049,n,Anot2submitted(n))),"b293450.txt");