cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293515 a(n) = Product_{d^k|n, d>1, k>1} prime(A286561(n,d)-1), where A286561(n,d) gives the highest exponent of d dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 10, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 14, 1, 1, 1, 8, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 10, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 66, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 2, 2, 1, 1, 1, 10, 10, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 14, 1, 2, 2, 8, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 10, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2017

Keywords

Crossrefs

Programs

  • PARI
    A293515(n) = { my(m=1,v); fordiv(n,d,if(d>1, v = valuation(n,d); if(v>1, m *= prime(v-1)))); m; };

Formula

a(n) = Product_{d|n, d>1} A008578(A286561(n,d)).
a(n) = A064989(A293514(n)).
Other identities. For all n >= 1:
1 + A001222(a(n)) = A046951(n).