cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293518 Number of surviving even nodes at generation n in the binary tree of persistently squarefree numbers (see A293230).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 6, 6, 8, 12, 16, 20, 31, 34, 56, 63, 88, 112, 150, 208, 287, 379, 511, 690, 908, 1239, 1637, 2252, 2945, 4052, 5348, 7203, 9681, 12974, 17432, 23470, 31419, 42254, 57026, 76182, 102845, 137764, 185271, 249065, 334864, 449586, 604164, 811709, 1089661, 1465433, 1968592
Offset: 0

Views

Author

Antti Karttunen, Oct 16 2017

Keywords

Examples

			a(3) = 2 because in the binary tree illustrated in A293230, there are two even nodes at the level 3 (namely, the nodes 10 and 14) that spawn just one offspring each.
		

Crossrefs

Programs

  • PARI
    \\ Compute the sequences A293441, A293518 and A293519 at the same time:
    allocatemem(2^30);
    next_living_bud_or_zero(n) = if(issquarefree(n),n,0);
    nextA293230generation(tops) = { my(new_tops = vecsort(vector(2*#tops,i,next_living_bud_or_zero((2*tops[(i+1)\2])+((i+1)%2))),,8)); if(0==new_tops[1], vector(#new_tops-1,i,new_tops[1+i]), new_tops); }
    writeA293441etc_counts(n,tops) = { my(os=0, es=0, k=0); for(i=1,#tops, if((tops[i]%2), k++; if(!issquarefree(1+(2*tops[i])), os++), if(issquarefree(1+(2*tops[i])), es++));); write("b293441.txt", n, " ", k); write("b293518.txt", n, " ", es); write("b293519.txt", n, " ", os); print1(k, ", ");}
    tops_of_tree = [1];
    write("b293441.txt", 0, " ", 1);
    write("b293518.txt", 0, " ", 0);
    write("b293519.txt", 0, " ", 0);
    print1(1, ", ");
    for(n=1,51,tops_of_tree = nextA293230generation(tops_of_tree); writeA293441etc_counts(n,tops_of_tree););
    
  • Scheme
    (define (A293518 n) (add (lambda (k) (* (if (and (= 0 (A008966 (+ k k))) (= 1 (A008966 (+ 1 k k)))) 1 0) (abs (A293233 k)))) (A000079 n) (+ -1 (A000079 (+ 1 n)))))
    ;; Implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k=(2^n)..(2^(1+n)-1)} abs(A293233(k)) * [0==A008966(2*k)] * [1==A008966(1+2*k)].
a(n) + A293519(n) = A293521(n).
a(n) - A293519(n) = A293517(n).