cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293519 Number of surviving (but not bifurcating) odd nodes at generation n in the binary tree of persistently squarefree numbers (see A293230).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 3, 2, 3, 3, 8, 10, 11, 17, 20, 31, 38, 46, 67, 90, 116, 160, 220, 280, 397, 509, 685, 927, 1280, 1663, 2248, 3056, 4050, 5383, 7339, 9714, 13029, 17714, 23738, 31791, 42793, 57473, 77175, 103839, 140100, 187495, 252068, 338257, 454325, 611101, 820924
Offset: 0

Views

Author

Antti Karttunen, Oct 16 2017

Keywords

Examples

			a(3) = 1 because in the binary tree illustrated in A293230, there is only one odd node at the level 3 (namely, the node 13) that spawns just one offspring.
		

Crossrefs

Programs

  • PARI
    \\ A naive algorithm (see A293518 for a better program):
    up_to_level = 28;
    up_to = (2^(1+up_to_level));
    is_persistently_squarefree(n,base) = { while(n>1, if(!issquarefree(n),return(0)); n \= base); (1); };
    { countsA293441 = 1; countsA293519 = 0; k=1; n=3; while(n <= 1+up_to,if(!bitand(n-1,n-2), write("b293441.txt", k, " ", countsA293441); write("b293519.txt", k, " ", countsA293519); print1(countsA293519,", "); countsA293441 = 0; countsA293519 = 0; k++); if(is_persistently_squarefree(n,2),countsA293441++; if(!issquarefree(1+(2*n)),countsA293519++)); n += 2); }
    
  • Scheme
    (define (A293519 n) (add (lambda (k) (* (if (and (= 1 (A008966 (+ k k))) (= 0 (A008966 (+ 1 k k)))) 1 0) (abs (A293233 k)))) (A000079 n) (+ -1 (A000079 (+ 1 n)))))
    ;; Implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k=(2^n)..(2^(1+n)-1)} abs(A293233(k)) * [1==A008966(2*k)] * [0==A008966(1+2*k)].
A293518(n) + a(n) = A293521(n).
A293518(n) - a(n) = A293517(n).