A293523 Persistently squarefree numbers for base-3 shifting: Numbers n such that all terms in finite set of positive numbers [n, floor(n/3), floor(n/9), floor(n/27), ..., floor(n/3^k)>0] are squarefree.
1, 2, 3, 5, 6, 7, 10, 11, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 35, 46, 47, 51, 53, 57, 58, 59, 65, 66, 67, 69, 70, 71, 91, 93, 94, 95, 101, 102, 103, 105, 106, 107, 138, 139, 141, 142, 143, 154, 155, 159, 161, 173, 174, 177, 178, 179, 195, 197, 199, 201, 202, 203, 209, 210, 211, 213, 214, 215, 273, 274, 281, 282
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
\\ A naivish algorithm: allocatemem(2^30); up_to_level = 10; up_to = (3^(1+up_to_level))-1; vekkuli = vector(up_to); vekkuli[1] = 1; vekkuli[2] = -1; write("b293523.txt", 1, " ", 1); write("b293523.txt", 2, " ", 2); kA293523 = 3; for(n=3,up_to, vekkuli[n] = moebius(n)*vekkuli[n\3]; if(vekkuli[n],write("b293523.txt", kA293523, " ", n); kA293523++;));
-
PARI
is_persistently_squarefree(n,base) = { while(n>1, if(!issquarefree(n),return(0)); n \= base); (1); }; isA293523(n) = is_persistently_squarefree(n,3); n=0; k=1; while(k <= 10000, n=n+1; if(isA293523(n),write("b293523.txt", k, " ", n);k=k+1));
Comments