A293530 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/Product_{j > 0, j mod k > 0} exp(x^j).
1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, -7, 0, 1, -1, -1, 5, 25, 0, 1, -1, -1, -1, -23, -181, 0, 1, -1, -1, -1, 25, -41, 1201, 0, 1, -1, -1, -1, 1, -101, 1111, -10291, 0, 1, -1, -1, -1, 1, 139, -209, -6259, 97777, 0, 1, -1, -1, -1, 1, 19, -569, 251, -16015
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 0, -1, -1, -1, -1, ... 0, 1, -1, -1, -1, ... 0, -7, 5, -1, -1, ... 0, 25, -23, 25, 1, ... 0, -181, -41, -101, 139, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
E.g.f. of column k: exp((Sum_{j=1..k-1} x^j)/(x^k - 1)).