cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293544 a(n) = round(Fibonacci(n)/3).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 7, 11, 18, 30, 48, 78, 126, 203, 329, 532, 861, 1394, 2255, 3649, 5904, 9552, 15456, 25008, 40464, 65473, 105937, 171410, 277347, 448756, 726103, 1174859, 1900962, 3075822, 4976784, 8052606, 13029390, 21081995, 34111385, 55193380
Offset: 0

Views

Author

Clark Kimberling, Oct 12 2017

Keywords

Comments

a(n) is the integer k that minimizes | k/Fibonacci(n) - 1/3 |.

Crossrefs

Cf. A000045 (Fibonacci(n)).
Cf. A004696 (floor(Fibonacci(n)/3)).
Cf. A293543 (ceiling(Fibonacci(n)/3)).

Programs

  • Mathematica
    Table[Round[Fibonacci[n]/3], {n, 0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
    Round[Fibonacci[Range[0, 20]]/3] (* Eric W. Weisstein, Feb 08 2025 *)
    LinearRecurrence[{1, 1, 0, -1, 1, 1}, {0, 0, 1, 1, 2, 3}, {0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)
    CoefficientList[Series[-(x^3/((-1 + x + x^2) (1 + x^4))), {x, 0, 20}], x] (* Eric W. Weisstein, Feb 08 2025 *)
    Table[(Fibonacci[n] + (-1)^n Sin[n Pi/4] (Cos[n Pi/2] + Sqrt[2] Sin[n Pi/2]))/3, {n, 0, 20}] (* Eric W. Weisstein, Feb 08 2025 *)

Formula

G.f.: -(x^2/((-1 + x + x^2) (1 + x^4))).
a(n) = a(n-1) + a(n-2) - a(n-4) + a(n-5) + a(n-6) for n >= 7.