cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293549 Expansion of Product_{k>=2} 1/(1 - x^k)^bigomega(k), where bigomega(k) is the number of prime divisors of k counted with multiplicity (A001222).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 6, 5, 13, 12, 23, 24, 47, 47, 82, 92, 152, 167, 265, 301, 462, 532, 779, 914, 1324, 1548, 2174, 2590, 3573, 4250, 5771, 6904, 9254, 11092, 14638, 17606, 23043, 27680, 35820, 43155, 55383, 66642, 84850, 102141, 129171, 155394, 195134, 234679, 293184, 352096, 437359
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

Euler transform of A001222.
Comment from R. J. Mathar, Sep 10 2021 (Start):
The triangle of the multiset transformation of A001222 looks as follows:
1 ;1
0 0 ;0
0 1 0 ;1
0 1 0 0 ;1
0 2 1 0 0 ;3
0 1 1 0 0 0 ;2
0 2 3 1 0 0 0 ;6
0 1 3 1 0 0 0 0 ;5
0 3 6 3 1 0 0 0 0 ;13
0 2 5 4 1 0 0 0 0 0 ;12
0 2 9 8 3 1 0 0 0 0 0 ;23
0 1 9 9 4 1 0 0 0 0 0 0 ;24
0 3 14 17 9 3 1 0 0 0 0 0 0 ;47
0 1 12 18 11 4 1 0 0 0 0 0 0 0 ;47
0 2 17 29 21 9 3 1 0 0 0 0 0 0 0 ;82
...
The second column is A001222, the row sums (after the semicolons) are this sequence. (End)

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 - x^k)^PrimeOmega[k], {k, 2, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d PrimeOmega[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]

Formula

G.f.: Product_{k>=2} 1/(1 - x^k)^b(k), where b(k) = [x^k] Sum_{p prime, j>=1} x^(p^j)/(1 - x^(p^j)).
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} a(n-k)*b(k), b(k) = Sum_{d|k} d*bigomega(d).