cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293550 a(n) = Sum_{k=0..n} k^3*binomial(2*n-k,n).

Original entry on oeis.org

0, 1, 11, 69, 354, 1650, 7293, 31213, 130832, 540702, 2212550, 8989090, 36327810, 146228940, 586823265, 2349424125, 9389012160, 37467344310, 149345215290, 594753416790, 2366845396500, 9413555798556, 37423053793026, 148719333293394, 590842248405024, 2346813893147500
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

Main diagonal of iterated partial sums array of cubes (starting with the first partial sums). For nonnegative integers see A002054, for squares see A265612.

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^3 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[x (1 + 4 x + x^2)/(1 - x)^(n + 5), {x, 0, n}], {n, 0, 25}]
    Table[2^(2 n + 1) n^2 (13 n + 7) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 5]), {n, 0, 25}]
    CoefficientList[Series[(6 - 6 Sqrt[1 - 4 x] - 36 x + 24 Sqrt[1 - 4 x] x + 55 x^2 - 19 Sqrt[1 - 4 x] x^2 - 15 x^3 + Sqrt[1 - 4 x] x^3)/(2 Sqrt[1 - 4 x] x^4), {x, 0, 25}], x]
    CoefficientList[Series[(E^(2 x) (36 - 24 x + 13 x^2) BesselI[0, 2 x])/x^2 + (E^(2 x) (-36 + 24 x - 31 x^2 + 13 x^3) BesselI[1, 2 x])/x^3, {x, 0, 25}], x]* Range[0, 25]!

Formula

a(n) = [x^n] x*(1 + 4*x + x^2)/(1 - x)^(n+5).
a(n) = 2^(2*n+1)*n^2*(13*n + 7)*Gamma(n+3/2)/(sqrt(Pi)*Gamma(n+5)).
a(n) ~ 26*4^n/sqrt(Pi*n).