cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293571 E.g.f.: exp(x/(1 + x + x^2)).

Original entry on oeis.org

1, 1, -1, -5, 25, 41, -1049, 2899, 54545, -610415, -1363409, 92652011, -651996311, -10663181255, 262674487895, -529402905149, -68312606260319, 1136414207246369, 7701376416944095, -584076369474366245, 6461047290787787321, 173442620419212050761
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2017

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = (3-2*n)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) + (5-2*n)*(n-1)*(n-2)*a(n-3)- (n-4)*(n-3)*(n-2)*(n-1)*a(n-4),a(0)=1,a(1)=1,a(2)=-1,a(3)=-5},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Jul 27 2020
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(exp(x/(1+x+x^2))))
    
  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(k=1, N, exp(x^(3*k-2)-x^(3*k-1)))))

Formula

E.g.f.: Product_{k>0} exp(x^(3*k-2)) / exp(x^(3*k-1)).
a(n) = (3-2*n)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) + (5-2*n)*(n-1)*(n-2)*a(n-3) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-4). - Robert Israel, Jul 27 2020