A293575 Difference between the number of proper divisors of n and the number of squares dividing n.
-1, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 3, 0, 2, 2, 1, 0, 3, 0, 3, 2, 2, 0, 5, 0, 2, 1, 3, 0, 6, 0, 2, 2, 2, 2, 4, 0, 2, 2, 5, 0, 6, 0, 3, 3, 2, 0, 6, 0, 3, 2, 3, 0, 5, 2, 5, 2, 2, 0, 9, 0, 2, 3, 2, 2, 6, 0, 3, 2, 6, 0, 7, 0, 2, 3, 3, 2, 6, 0, 6, 1, 2, 0, 9, 2, 2, 2, 5, 0, 9, 2, 3, 2, 2, 2, 8, 0, 3, 3, 4, 0, 6, 0, 5, 6
Offset: 1
Keywords
Examples
a(6) = 2 because 2 is difference of number of ways of writing n = 1 + 5 = 2 + 4 = 3 + 3 where 1|5, 2|4, 3|3 and number of ways of writing n = 1*6 where 1|6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{d = Divisors@ n}, Length@ d - Length[ Select[ d, IntegerQ@ Sqrt@# &]] - 1];; Array[f, 105] (* Robert G. Wilson v, Nov 28 2017 *)
Formula
a(n) = A056595(n) - 1. - Antti Karttunen, Oct 30 2017
a(n) = 0 iff n is a prime or a square of a prime, A000430. - Robert G. Wilson v, Nov 28 2017
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - zeta(2) - 2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023
Comments