A293580 Number of compositions of n where each part i is marked with a word of length i over a ternary alphabet whose letters appear in alphabetical order and all three letters occur at least once in the composition.
13, 132, 924, 5546, 30720, 162396, 834004, 4204080, 20932656, 103365416, 507538320, 2482394448, 12108785680, 58954149792, 286654114176, 1392524616032, 6760326357888, 32804684941248, 159135076864576, 771789378620928, 3742512930335232, 18145949724380288
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
Crossrefs
Column k=3 of A261781.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(3): seq(a(n), n=3..30);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[j + k - 1, k - 1], {j, 1, n}]]; a[n_] := With[{k = 3}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[3, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
Formula
From Vaclav Kotesovec, Oct 14 2017: (Start)
a(n) = 12*a(n-1) - 52*a(n-2) + 102*a(n-3) - 96*a(n-4) + 44*a(n-5) - 8*a(n-6).
a(n) ~ (1 + 2^(1/3) + 2^(2/3))/6 * (2 + 2^(1/3) + 2^(2/3))^n. (End)