A293581 Number of compositions of n where each part i is marked with a word of length i over a quaternary alphabet whose letters appear in alphabetical order and all four letters occur at least once in the composition.
75, 1232, 13064, 114032, 893490, 6550112, 45966744, 313094512, 2088274012, 13719804224, 89151186688, 574612403008, 3681207840264, 23476261805376, 149202047915680, 945775992492352, 5983286739107952, 37794913734696448, 238464380911582336, 1503238554666345728
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
Crossrefs
Column k=4 of A261781.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(4): seq(a(n), n=4..30);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - j, k] Binomial[j + k - 1, k - 1], {j, 1, n}]]; a[n_] := With[{k = 4}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]]; a /@ Range[4, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
Formula
From Vaclav Kotesovec, Oct 14 2017: (Start)
a(n) = 20*a(n-1) - 160*a(n-2) + 670*a(n-3) - 1634*a(n-4) + 2476*a(n-5) - 2432*a(n-6) + 1564*a(n-7) - 640*a(n-8) + 152*a(n-9) - 16*a(n-10).
a(n) ~ (1 + sqrt(2) + sqrt(4 + 3*sqrt(2)))/8 * (2 + sqrt(2) + sqrt(4 + 3*sqrt(2)))^n. (End)