cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293582 Number of compositions of n where each part i is marked with a word of length i over a quinary alphabet whose letters appear in alphabetical order and all five letters occur at least once in the composition.

Original entry on oeis.org

541, 13060, 195020, 2327960, 24418640, 235804122, 2152586500, 18883155160, 160908360260, 1341800118020, 11007289244964, 89168468504160, 715330888641680, 5694960569676240, 45067846839572000, 354959016901129928, 2785141532606257120, 21787375678321712160
Offset: 5

Views

Author

Alois P. Heinz, Oct 12 2017

Keywords

Crossrefs

Column k=5 of A261781.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
        end:
    a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(5):
    seq(a(n), n=5..30);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1,
        Sum[b[n - j, k] Binomial[j + k - 1, k - 1], {j, 1, n}]];
    a[n_] := With[{k = 5}, Sum[b[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]];
    a /@ Range[5, 30] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)

Formula

a(n) = 30*a(n-1) - 380*a(n-2) + 2690*a(n-3) - 11944*a(n-4) + 35618*a(n-5) - 74912*a(n-6) + 115104*a(n-7) - 132120*a(n-8) + 114500*a(n-9) - 74888*a(n - 10) + 36504*a(n - 11) - 12888*a(n - 12) + 3120*a(n - 13) - 464*a(n - 14) + 32*a(n - 15). - Vaclav Kotesovec, Oct 14 2017
a(n) ~ c * d^n, where d = 7.72502395887257562679242875427350515911685429396536... is the real root of the equation -2 + 10*d - 20*d^2 + 20*d^3 - 10*d^4 + d^5 = 0 and c = 0.67250239588725756267924287542735051591168542939653... is the real root of the equation -1 - 50*c - 1000*c^2 - 10000*c^3 - 50000*c^4 + 100000*c^5 = 0. - Vaclav Kotesovec, Oct 15 2017