A293583 Number of compositions of n where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order and all six letters occur at least once in the composition.
4683, 155928, 3116220, 48697048, 657516672, 8065687344, 92540869002, 1011476639976, 10662168594984, 109327852591208, 1097238662684028, 10827944900524680, 105430826499237004, 1015590292306277376, 9698300806656595584, 91961212434214073824, 866974686508851897168
Offset: 6
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 6..1000
Crossrefs
Column k=6 of A261781.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(6): seq(a(n), n=6..30);
Formula
a(n) = 42*a(n-1) - 770*a(n-2) + 8190*a(n-3) - 56854*a(n-4) + 275758*a(n-5) - 980010*a(n-6) + 2645668*a(n-7) - 5576808*a(n-8) + 9366788*a(n-9) - 12715312*a(n - 10) + 14078260*a(n - 11) - 12772248*a(n - 12) + 9499064*a(n - 13) - 5769584*a(n - 14) + 2837496*a(n - 15) - 1113568*a(n - 16) + 340784*a(n - 17) - 78416*a(n - 18) + 12768*a(n - 19) - 1312*a(n - 20) + 64*a(n - 21). - Vaclav Kotesovec, Oct 14 2017