A293585 Number of compositions of n where each part i is marked with a word of length i over an octonary alphabet whose letters appear in alphabetical order and all eight letters occur at least once in the composition.
545835, 30532384, 984910128, 24082101504, 496274574936, 9104663637024, 153620123190816, 2434519831873920, 36763980389367378, 534505149483841568, 7538836344403305280, 103747819539055788640, 1399283448432865901624, 18560930972118370361856
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..925
Crossrefs
Column k=8 of A261781.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8): seq(a(n), n=8..30);
Formula
a(n) = 72*a(n-1) - 2352*a(n-2) + 46452*a(n-3) - 624540*a(n-4) + 6112176*a(n-5) - 45535444*a(n-6) + 266958678*a(n-7) - 1264269754*a(n-8) + 4940034192*a(n-9) - 16203617768*a(n - 10) + 45247660712*a(n - 11) - 108803821608*a(n - 12) + 227386203188*a(n - 13) - 416072786528*a(n - 14) + 670510739364*a(n - 15) - 955987452656*a(n - 16) + 1210032902216*a(n - 17) - 1363000899064*a(n - 18) + 1368396317120*a(n - 19) - 1225293972272*a(n - 20) + 978413136792*a(n - 21) - 696053259552*a(n - 22) + 440365848816*a(n - 23) - 247084003008*a(n - 24) + 122486489680*a(n - 25) - 53377923152*a(n - 26) + 20315614688*a(n - 27) - 6696256832*a(n - 28) + 1890687584*a(n - 29) - 450764768*a(n - 30) + 89006080*a(n - 31) - 14167936*a(n - 32) + 1747264*a(n - 33) - 156672*a(n - 34) + 9088*a(n - 35) - 256*a(n - 36). - Vaclav Kotesovec, Oct 14 2017