A293586 Number of compositions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all nine letters occur at least once in the composition.
7087261, 492006708, 19423259316, 574637640288, 14193955791576, 309660911167464, 6171397007611848, 114853532449557600, 2026594842428425320, 34277110454602760762, 560261324259420037164, 8904738970375872782112, 138290600270036591006520, 2106511986693346884064584
Offset: 9
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..885
Crossrefs
Column k=9 of A261781.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) end: a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(9): seq(a(n), n=9..30);
Formula
a(n) = 90*a(n-1) - 3720*a(n-2) + 94140*a(n-3) - 1642368*a(n-4) + 21111972*a(n-5) - 208936444*a(n-6) + 1643906838*a(n-7) - 10544413816*a(n-8) + 56273496182*a(n-9) - 254124223400*a(n - 10) + 984813733064*a(n - 11) - 3313818868728*a(n - 12) + 9777617820932*a(n - 13) - 25505157099056*a(n - 14) + 59222241227144*a(n - 15) - 123105458091224*a(n - 16) + 230174411303404*a(n - 17) - 388610578141384*a(n - 18) + 594331344450528*a(n - 19) - 825476563250976*a(n - 20) + 1043293124084592*a(n - 21) - 1201650502768408*a(n - 22) + 1262594519234968*a(n - 23) - 1210928179506120*a(n - 24) + 1060266691901408*a(n - 25) - 847323181595664*a(n - 26) + 617639581793392*a(n - 27) - 410205458302944*a(n - 28) + 247843724510640*a(n - 29) - 135949707500048*a(n - 30) + 67526545242016*a(n - 31) - 30273460576096*a(n - 32) + 12201462236512*a(n - 33) - 4399521714368*a(n - 34) + 1410734015840*a(n - 35) - 399326676032*a(n - 36) + 98870585152*a(n - 37) - 21165129088*a(n - 38) + 3859085248*a(n - 39) - 587513600*a(n - 40) + 72658304*a(n - 41) - 7011968*a(n - 42) + 495360*a(n - 43) - 22784*a(n - 44) + 512*a(n - 45). - Vaclav Kotesovec, Oct 14 2017