cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293598 L.g.f.: Sum_{n>=1} x^((2*n-1)^2) / ( (2*n-1) * (1 - x^(2*n))^(2*n-1) ).

Original entry on oeis.org

1, 3, 5, 7, 12, 11, 26, 15, 51, 19, 91, 23, 155, 27, 232, 62, 341, 35, 592, 39, 656, 344, 870, 47, 1820, 51, 1431, 1441, 1843, 59, 4758, 63, 2925, 4489, 3197, 71, 11899, 75, 4466, 11376, 7650, 83, 23052, 87, 12816, 25025, 7936, 95, 57133, 99, 10706, 49131, 37220, 107, 79570, 2146, 62828, 89263, 15951, 119, 228096, 123, 19500, 152146, 169033, 18864, 218253, 135, 267972, 246308, 75153, 143, 724159, 147, 33227, 490146, 629034, 155, 512448, 159
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2017

Keywords

Examples

			L.g.f.: A(x) = x + 3*x^3/3 + 5*x^5/5 + 7*x^7/7 + 12*x^9/9 + 11*x^11/11 + 26*x^13/13 + 15*x^15/15 + 51*x^17/17 + 19*x^19/19 + 91*x^21/21 + 23*x^23/23 + 155*x^25/25 + 27*x^27/27 + 232*x^29/29 + 62*x^31/31 + 341*x^33/33 + 35*x^35/35 + 592*x^37/37 + 39*x^39/39 + 656*x^41/41 + 344*x^43/43 + 870*x^45/45 + 47*x^47/47 + 1820*x^49/49 + 51*x^51/51 + 1431*x^53/53 + 1441*x^55/55 + 1843*x^57/57 + 59*x^59/59 + 4758*x^61/61 + 63*x^63/63 + 2925*x^65/65 +...
which may be written as
A(x) = x/(1 - x^2) + x^9/(3*(1 - x^4)^3) + x^25/(5*(1 - x^6)^5) + x^49/(7*(1 - x^8)^7) + x^81/(9*(1 - x^10)^9) + x^121/(11*(1 - x^12)^11) + x^169/(13*(1 - x^14)^13) +...+ x^((2*n-1)^2) / ((2*n-1)*(1 - x^(2*n))^(2*n-1)) +...
The coefficient of x^(2^n+1)/(2^n+1) in A(x) for n>=1 begins:
[3, 5, 12, 51, 341, 2925, 169033, 33445209, 21619038033, ..., A293599(n), ...].
		

Crossrefs

Programs

  • Mathematica
    nmax = 80; Table[(CoefficientList[Series[Sum[x^((2*k - 1)^2)/((2*k - 1)*(1 - x^(2*k))^(2*k - 1)), {k, 1, 2*nmax + 1}], {x, 0, 2*nmax + 1}], x] * Range[0, 2*nmax + 1])[[2*n]], {n, 1, nmax}] (* Vaclav Kotesovec, Oct 15 2017 *)
  • PARI
    {a(n) = my(A, Ox = O(x^(2*n+1)));
    A = sum(m=1, sqrtint(n+1), x^((2*m-1)^2) / ( (2*m-1) * (1 - x^(2*m) +Ox)^(2*m-1) ) );
    (2*n-1)*polcoeff(A, 2*n-1)}
    for(n=1, 80, print1(a(n), ", "))