cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293608 a(n) = (3*n + 7)*Pochhammer(n, 5) / 4!.

Original entry on oeis.org

0, 50, 390, 1680, 5320, 13860, 31500, 64680, 122760, 218790, 370370, 600600, 939120, 1423240, 2099160, 3023280, 4263600, 5901210, 8031870, 10767680, 14238840, 18595500, 24009700, 30677400, 38820600, 48689550, 60565050, 74760840, 91626080, 111547920, 134954160
Offset: 0

Views

Author

Peter Luschny, Oct 20 2017

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [(3*n + 7)*Factorial(n+4)/(Factorial(4)*Factorial(n-1)): n in [1..30]]; // G. C. Greubel, Nov 20 2017
    
  • Maple
    A293608 := n -> (3*n+7)*pochhammer(n, 5)/4!:
    seq(A293608(n), n=0..11);
  • Mathematica
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 50, 390, 1680, 5320, 13860, 31500}, 32]
    Table[n*(n+1)*StirlingS2[4 + n, 2 + n], {n,0,50}] (* G. C. Greubel, Nov 20 2017 *)
    f[n_] := (3 n + 7) Pochhammer[n, 5]/4!; Array[f, 31, 0] (* or *)
    CoefficientList[ Series[10x (5 + 4x)/(1 - x)^7, {x, 0, 30}], x] (* Robert G. Wilson v, Nov 21 2017 *)
  • PARI
    for(n=0,30, print1(n*(n+1)*stirling(4 + n, 2 + n, 2), ", ")) \\ G. C. Greubel, Nov 20 2017
    
  • PARI
    concat(0, Vec(10*x*(5 + 4*x) / (1 - x)^7 + O(x^40))) \\ Colin Barker, Nov 21 2017

Formula

a(n) = n*(n+1)*Stirling2(4 + n, 2 + n).
-a(-n-4) = a(n) - 30*binomial(n+4, 5)*(n + 2) for n >= 0.
From Colin Barker, Nov 21 2017: (Start)
G.f.: 10*x*(5 + 4*x) / (1 - x)^7.
a(n) = (1/24)*(n*(168 + 422*n + 395*n^2 + 175*n^3 + 37*n^4 + 3*n^5)).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>6. (End)
From Amiram Eldar, Aug 31 2025: (Start)
Sum_{n>=1} 1/a(n) = 8703/490 - 81*sqrt(3)*Pi/70 - 729*log(3)/70.
Sum_{n>=1} (-1)^(n+1)/a(n) = 81*sqrt(3)*Pi/35 + 416*log(2)/35 - 15298/735. (End)