cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293613 a(n) = (1/4)*(7*n + 17)*(5*n + 6)*Pochhammer(n, 6) / 6!.

Original entry on oeis.org

0, 66, 868, 5586, 24570, 84630, 245322, 625086, 1440582, 3063060, 6096090, 11479468, 20624604, 35587188, 59283420, 95756580, 150501204, 230852622, 346450104, 509782350, 736824550, 1047776730, 1467913590, 2028556530, 2768179050, 3733657200, 4981677246, 6580313208
Offset: 0

Views

Author

Peter Luschny, Oct 13 2017

Keywords

Programs

  • Magma
    [(7*n + 17)*(5*n + 6)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n/(4*Factorial(6)): n in [0..50]]; // G. C. Greubel, Oct 23 2017
  • Maple
    A293613 := n -> (1/4)*(7*n + 17)*(5*n + 6)*pochhammer(n,6)/6!;
    seq(A293613(n), n=0..29);
  • Mathematica
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1}, {0, 66, 868, 5586, 24570, 84630, 245322, 625086, 1440582}, 40] (* or *) a = (12240 #1 + 43188 #1^2 + 61948 #1^3 + 46835 #1^4 + 20200 #1^5 + 4982 #1^6 + 652 #1^7 + 35 #1^8)/2880 & ; Table[a[n], {n, 0, 40}]
    Table[(7*n + 17)*(5*n + 6)*Pochhammer[n, 6]/(4*6!), {n, 0, 50}] (* G. C. Greubel, Oct 23 2017 *)
  • PARI
    for(n=0,50, print1((7*n + 17)*(5*n + 6)*(n+5)*(n+4)*(n+3)*(n+2)*(n+1)*n/(4*6!), ", ")) \\ G. C. Greubel, Oct 23 2017
    
  • PARI
    concat(0, Vec(2*x*(33 + 137*x + 75*x^2) / (1 - x)^9 + O(x^40))) \\ Colin Barker, Jul 28 2019
    

Formula

From Colin Barker, Jul 28 2019: (Start)
G.f.: 2*x*(33 + 137*x + 75*x^2) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
a(n) = ((n*(12240 + 43188*n + 61948*n^2 + 46835*n^3 + 20200*n^4 + 4982*n^5 + 652*n^6 + 35*n^7))) / 2880.
(End)