A293621 Numbers k such that (2*k)^2 + 1 and (2*k+2)^2 + 1 are both primes.
1, 2, 7, 12, 27, 62, 102, 192, 232, 317, 322, 357, 547, 572, 587, 622, 637, 657, 687, 782, 807, 837, 842, 982, 1027, 1042, 1047, 1202, 1227, 1267, 1332, 1417, 1462, 1567, 1652, 1767, 1877, 1887, 2012, 2077, 2087, 2182, 2302, 2307, 2367, 2392, 2397, 2477, 2507
Offset: 1
Keywords
Examples
1 is in the sequence since (2*1)^2 + 1 = 5 and (2*1+2)^2 + 1 = 17 are both primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Wacław Sierpiński, Remarque sur la distribution de nombres premiers, Matematički Vesnik, Vol. 2(17), Issue 31 (1965), pp. 77-78.
- Eric Weisstein's World of Mathematics, Near-Square Prime.
- Wikipedia, Schinzel's hypothesis H.
Programs
-
Mathematica
Select[Range[10^4], AllTrue[{(2#)^2+1, (2#+2)^2+1}, PrimeQ] &]
-
PARI
isok(n) = isprime((2*n)^2 + 1) && isprime((2*n+2)^2 + 1); \\ Michel Marcus, Oct 13 2017
Formula
a(n) = A096012(n)/2. - Amiram Eldar, Feb 24 2020
Comments