A293622 Fermat pseudoprimes to base 2 that are triangular.
561, 2701, 4371, 8911, 10585, 18721, 33153, 41041, 49141, 93961, 104653, 115921, 157641, 226801, 289941, 314821, 334153, 534061, 665281, 721801, 831405, 873181, 915981, 1004653, 1373653, 1537381, 1755001, 1815465, 1987021, 2035153, 2233441, 2284453, 3059101
Offset: 1
Keywords
Examples
2701 = 73 * 74 / 2 = 37 * 73 is in the sequence since it is triangular and composite, and 2^2700 == 1 (mod 2701).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Shyam Sunder Gupta, Triangular Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 3, 83-125.
- Andrzej Rotkiewicz, Sur les nombres pseudopremiers triangulaires, Elemente der Mathematik, Vol. 19 (1964), pp. 82-83.
Programs
-
Mathematica
t[n_]:=n(n+1)/2; Select[t[Range[3, 10^4]], PowerMod[2, (# - 1), # ] == 1 &]
-
PARI
forcomposite(c=1, 31*10^5, if(Mod(2, c)^(c-1)==1 && ispolygonal(c, 3), print1(c, ", "))) \\ Felix Fröhlich, Oct 14 2017
Comments