cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293623 Fermat pseudoprimes to base 2 that are pentagonal.

Original entry on oeis.org

7957, 241001, 1419607, 1830985, 1993537, 2134277, 2163001, 2491637, 2977217, 4864501, 5351537, 6952037, 10084177, 11367137, 11433301, 14609401, 21306157, 22591301, 26470501, 26977001, 29581501, 35851037, 44731051, 46517857, 53154337, 55318957, 55610837
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2017

Keywords

Comments

Rotkiewicz proved that this sequence is infinite.
Intersection of A001567 and A000326.
The corresponding indices of the pentagonal numbers are 73, 401, 973, 1105, 1153, 1193, 1201, 1289, 1409, 1801, 1889, 2153, 2593, 2753, 2761, ...

Examples

			7957 = (3*73^2 - 73)/2 is in the sequence since it is pentagonal, composite, and 2^7956 == 1 (mod 7957).
		

References

  • Andrzej Rotkiewicz, Sur les nombres pseudopremiers pentagonaux, Bull. Soc. Roy. Sci. Liège, Vol. 33 (1964), pp. 261-263.

Crossrefs

Programs

  • Mathematica
    p[n_]:=(3n^2-n)/2; Select[p[Range[3, 10^4]], PowerMod[2, (# - 1), #]==1 &]