cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A321868 Fermat pseudoprimes to base 2 that are octagonal.

Original entry on oeis.org

341, 645, 2465, 2821, 4033, 5461, 8321, 15841, 25761, 31621, 68101, 83333, 162401, 219781, 282133, 348161, 530881, 587861, 653333, 710533, 722261, 997633, 1053761, 1082401, 1193221, 1246785, 1333333, 1357441, 1398101, 1489665, 1584133, 1690501, 1735841
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A000567.
The corresponding indices of the octagonal numbers are 11, 15, 29, 31, 37, 43, 53, 73, 93, 103, 151, 167, 233, 271, 307, 341, 421, 443, 467, 487, 491, 577, 593, 601, 631, 645, 667, 673, 683, 705, 727, 751, 761, 901, 911, 919, 991, ...
First differs from A216170 at n = 505.

Crossrefs

Programs

  • Mathematica
    oct[n_]:=n(3n-2); Select[oct[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = (n>1) && ispolygonal(n, 8) && !isprime(n) && (Mod(2, n)^n==2); \\ Daniel Suteu, Nov 29 2018

A321870 Fermat pseudoprimes to base 2 that are decagonal.

Original entry on oeis.org

1105, 1387, 2047, 3277, 6601, 13747, 16705, 19951, 31417, 74665, 83665, 88357, 90751, 275887, 390937, 514447, 604117, 642001, 741751, 748657, 769567, 916327, 1092547, 1293337, 1302451, 1433407, 1520905, 1530787, 1809697, 1907851, 2008597, 2205967, 2387797
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A001107.
The corresponding indices of the decagonal numbers are 17, 19, 23, 29, 41, 59, 65, 71, 89, 137, 145, 149, 151, 263, 313, 359, 389, 401, 431, 433, 439, 479, 523, 569, 571, 599, 617, 619, 673, 691, 709, 743, 773, 829, 863, 883, 911, 919, 941, ...

Crossrefs

Programs

  • Mathematica
    dec[n_] := n(4n-3); Select[dec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = (n>1) && ispolygonal(n, 10) && !isprime(n) && (Mod(2, n)^n==2); \\ Daniel Suteu, Nov 29 2018

A322123 Fermat pseudoprimes to base 2 that are tetradecagonal.

Original entry on oeis.org

31609, 60701, 458989, 513629, 679729, 729061, 745889, 1207361, 1994689, 2746589, 4361389, 4974971, 5173601, 5444489, 6749021, 9056501, 12659989, 13295281, 15525241, 15757741, 16070429, 16705021, 20770621, 21400481, 23822329, 23966011, 27492581, 34003061
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A051866.
The corresponding indices of the tetradecagonal numbers are 73, 101, 277, 293, 337, 349, 353, 449, 577, 677, 853, 911, 929, 953, 1061, 1229, 1453, 1489, 1609, 1621, 1637, 1669, 1861, 1889, 1993, 1999, ...

Crossrefs

Programs

  • Mathematica
    tetradec[n_] := n(6n-5); Select[tetradec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
    Select[PolygonalNumber[14,Range[2400]],PowerMod[2,#-1,#]==1&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 11 2018 *)
  • PARI
    isok(n) = ispolygonal(n, 14) && (Mod(2, n)^n==2) && !isprime(n) && (n>1); \\ Michel Marcus, Nov 28 2018

A322160 Fermat pseudoprimes to base 2 that are octadecagonal.

Original entry on oeis.org

8481, 14491, 29341, 62745, 196093, 396271, 526593, 2184571, 2513841, 5256091, 7017193, 8137585, 13448593, 15247621, 16053193, 16879501, 18740971, 20494401, 29878381, 33704101, 35703361, 36724591, 41607721, 42709591, 69741001, 70593931, 80927821, 82976181
Offset: 1

Views

Author

Amiram Eldar, Nov 29 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A051870.
The corresponding indices of the octadecagonal numbers are 33, 43, 61, 89, 157, 223, 257, 523, 561, 811, 937, 1009, 1297, 1381, 1417, 1453, 1531, ...

Crossrefs

Programs

  • Mathematica
    octadec[n_]:=n(8n-7); Select[octadec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = (n>1) && ispolygonal(n, 18) && !isprime(n) && (Mod(2, n)^n==2); \\ Michel Marcus, Nov 29 2018

A322130 Fermat pseudoprimes to base 2 that are hexagonal.

Original entry on oeis.org

561, 2701, 4371, 8911, 10585, 18721, 33153, 49141, 93961, 104653, 115921, 157641, 226801, 289941, 314821, 334153, 534061, 665281, 721801, 831405, 873181, 915981, 1004653, 1373653, 1537381, 1755001, 1815465, 1987021, 2035153, 2233441, 2284453, 3059101, 3363121
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2018

Keywords

Comments

Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite. His proof is the same as that of triangular pseudoprimes, since all the triangular numbers that he generates are also hexagonal (see comment in A320599).
Intersection of A001567 and A000384.
Subsequence of A293622.
The corresponding indices of the hexagonal numbers are 17, 37, 47, 67, 73, 97, 129, 157, 217, 229, 241, 281, 337, 381, 397, 409, 517, 577, 601, 645, 661, 677, 709, 829, 877, 937, 953, 997, ...

Crossrefs

Programs

  • Mathematica
    hex[n_] := n(2n-1); Select[hex[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
  • PARI
    isok(n) = ispolygonal(n, 6) && (Mod(2, n)^n==2) && !isprime(n) && (n>1); \\ Michel Marcus, Nov 28 2018

A371759 a(n) is the smallest n-gonal number that is a Fermat pseudoprime to base 2 (A001567), or -1 if no such number exists.

Original entry on oeis.org

561, 1194649, 7957, 561, 23377, 341, 129889, 1105, 35333, 561, 204001, 31609, 2940337, 1105, 493697, 8481, 13981, 1905, 88561, 41665, 10680265, 1729, 107185, 264773, 449065, 6601, 2165801, 23001, 1141141, 13981, 272251, 4369, 17590957, 15841, 137149, 2821, 561
Offset: 3

Views

Author

Amiram Eldar, Apr 05 2024

Keywords

Comments

The corresponding indices of the n-gonal numbers are 33, 1093, 73, 17, 97, ... (A371760).

Examples

			a(4) = A001220(1)^2 = 1093^2 = 1194649. The only known square base-2 pseudoprimes are the squares of the Wieferich primes (A001220).
		

Crossrefs

Programs

  • Mathematica
    p[k_, n_] := ((n-2)*k^2 - (n-4)*k)/2; pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; a[n_] := Module[{k = 2}, While[! pspQ[p[k, n]], k++]; p[k, n]]; Array[a, 50, 3]
  • PARI
    p(k, n) = ((n-2)*k^2 - (n-4)*k)/2;
    ispsp(n) = !isprime(n) && Mod(2, n)^(n-1) == 1;
    a(n) = {my(k = 2); while(!ispsp(p(k, n)), k++); p(k, n);}

Formula

a(n) = ((n-2)*k^2 - (n-4)*k)/2, where k = A371760(n).

A371760 a(n) is the smallest number k such that the k-th n-gonal number is a Fermat pseudoprime to base 2 (A001567), or -1 if no such number exists.

Original entry on oeis.org

33, 1093, 73, 17, 97, 11, 193, 17, 89, 11, 193, 73, 673, 13, 257, 33, 41, 15, 97, 65, 1009, 13, 97, 149, 190, 23, 401, 41, 281, 31, 133, 17, 1033, 31, 89, 13, 6, 59, 241, 157, 1217, 91, 145, 37, 937, 29, 1289, 73, 97, 41, 617, 19, 137, 151, 34, 103, 8641, 47, 82
Offset: 3

Views

Author

Amiram Eldar, Apr 05 2024

Keywords

Comments

The corresponding pseudoprimes are in A371759.

Crossrefs

Programs

  • Mathematica
    p[k_, n_] := ((n - 2)*k^2 - (n - 4)*k)/2; pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; a[n_] := Module[{k = 2}, While[! pspQ[p[k, n]], k++]; k]; Array[a, 100, 3]
  • PARI
    p(k, n) = ((n-2)*k^2 - (n-4)*k)/2;
    ispsp(n) = !isprime(n) && Mod(2, n)^(n-1) == 1;
    a(n) = {my(k = 2); while(!ispsp(p(k, n)), k++); k;}
Showing 1-7 of 7 results.