A321871 Numbers k such that m = 4k^2 + 2k + 17 and 4m - 3 are both primes.
1, 3, 4, 9, 11, 14, 23, 36, 38, 49, 66, 101, 133, 134, 141, 154, 158, 191, 193, 196, 198, 213, 228, 241, 269, 283, 294, 313, 334, 339, 384, 394, 411, 413, 431, 453, 499, 511, 554, 558, 601, 619, 639, 649, 661, 686, 701, 704, 718, 758, 791, 804, 818, 821, 881
Offset: 1
Keywords
Examples
1 is in the sequence since 4*1^2 + 2*1 + 17 = 23 and 4*23 - 3 = 89 are both primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
- Wikipedia, Schinzel's Hypothesis H.
Programs
-
Mathematica
Select[Range[1000], PrimeQ[4#^2 + 2# + 17] && PrimeQ[16#^2 + 8# + 65] &]
-
PARI
isok(n) = isprime(m=4*n^2 + 2*n + 17) && isprime(4*m-3); \\ Michel Marcus, Nov 20 2018
Comments