A322161 Numbers k such that m = 8k^2 + 2k + 33 and 8m - 7 are both primes.
1, 46, 58, 133, 145, 175, 208, 223, 241, 403, 430, 463, 526, 568, 808, 868, 985, 1015, 1021, 1105, 1120, 1360, 1465, 1501, 1600, 1918, 1978, 2236, 2350, 2413, 2908, 2965, 3043, 3211, 3265, 3523, 3556, 3568, 3601, 3721, 3811, 3868, 4066, 4291, 4300, 4336, 4831
Offset: 1
Keywords
Examples
1 is in the sequence since 8*1^2 + 2*1 + 33 = 43 and 8*43 - 7 = 337 are both primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
- Wikipedia, Schinzel's Hypothesis H.
Programs
-
Mathematica
Select[Range[1000], PrimeQ[8#^2 + 2# + 33] && PrimeQ[64#^2 + 16# + 257] &]
-
PARI
isok(n) = isprime(m = 8*n^2+2*n+33) && isprime(8*m-7); \\ Michel Marcus, Nov 29 2018
Comments