A293647 Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions).
91, 152, 189, 217, 513, 721, 728, 999, 1027, 1729, 3087, 3367, 4104, 4706, 4921, 4977, 5256, 5859, 6832, 7657, 8587, 8911, 9919, 10621, 10712, 12663, 12691, 12824, 14911, 15093, 15561, 16120, 16263, 20683, 21014, 23058, 23877, 25669, 27937, 28063, 31519, 32984
Offset: 1
Keywords
Examples
189 = 4^3 + 5^3 = 6^3 + (-3)^3 and 4, 5, 6, -3 are coprime, so 189 is in the sequence. 35208 = 34^3 + (-16)^3 = 33^3 + (-9)^3 and 34, -16, 33, -9 are coprime, so 35208 is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000 (first 352 terms from Rosalie Fay)
Crossrefs
Programs
-
Maple
g:= proc(s,n) local x; x:= s/2 + sqrt(12*n/s-3*s^2)/6; if not x::integer then return NULL fi; [x,s - x]; end proc: filter:= proc(n) local pairs, i,j; pairs:= map(g, numtheory:-divisors(n),n); for i from 2 to nops(pairs) do for j from 1 to i-1 do if igcd(op(pairs[i]),op(pairs[j]))=1 then return true fi od od; false end proc: select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..4000)]); # Robert Israel, Oct 22 2017
-
Mathematica
g[s_, n_] := Module[{x}, x = s/2 + Sqrt[12*n/s - 3*s^2]/6; If[!IntegerQ[x], Return[Nothing]]; {x, s - x}]; filter[n_] := Module[{pairs, i, j}, pairs = g[#, n]& /@ Divisors[n]; For[i = 2, i <= Length[pairs], i++,For[j = 1, j <= i - 1, j++, If[GCD @@ Join[pairs[[i]], pairs[[j]]] == 1, Return[True]]]]; False]; Select[Flatten[Table[Table[9*i + j, {j, {1, 2, 7, 8, 9}}], {i, 0, 4000}]], filter] (* Jean-François Alcover, May 28 2023, after Robert Israel *)
Comments