cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293646 Sum of two (possibly negative) coprime cubes, but not the sum of 2 non-coprime cubes.

Original entry on oeis.org

1, 2, 7, 9, 19, 26, 28, 35, 37, 61, 63, 65, 91, 98, 117, 124, 126, 127, 133, 169, 215, 217, 218, 271, 279, 316, 331, 335, 341, 342, 344, 351, 370, 386, 387, 397, 407, 468, 469, 485, 511, 539, 547, 559, 602, 604, 631, 637, 657, 665, 721, 730, 737, 793, 817, 819
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Not every term is cubefree; some are sb^3 where s is in A159843 and b > 1.

Examples

			344 = 7^3 + 1^3 and 344 is not also the sum of cubes of 2 non-coprime integers, so 344 is in the sequence.
152 = 6^3 + (-4)^3 and 6 and -4 are not coprime, so 152 is not in the sequence.
		

Crossrefs

Cf. A020895 (cubefree); A293645 (allows non-coprime); A293648, A293651

Programs

  • Mathematica
    s[n_] := CoprimeQ @@@ ({x, y} /. Solve[n == x^3 + y^3, {x, y}, Integers]);
    Reap[For[k = 1, k < 2000, k++, If[Union[s[k]] == {True}, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Feb 02 2023 *)

A293647 Positive numbers that are the sum of two (possibly negative) cubes in at least 2 ways (primitive solutions).

Original entry on oeis.org

91, 152, 189, 217, 513, 721, 728, 999, 1027, 1729, 3087, 3367, 4104, 4706, 4921, 4977, 5256, 5859, 6832, 7657, 8587, 8911, 9919, 10621, 10712, 12663, 12691, 12824, 14911, 15093, 15561, 16120, 16263, 20683, 21014, 23058, 23877, 25669, 27937, 28063, 31519, 32984
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Primitive means that the 4 summands are coprime.
Not every term is the sum of two coprime cubes.
a(1) = A047696(2).

Examples

			189 = 4^3 + 5^3 = 6^3 + (-3)^3 and 4, 5, 6, -3 are coprime, so 189 is in the sequence.
35208 = 34^3 + (-16)^3 = 33^3 + (-9)^3 and 34, -16, 33, -9 are coprime, so 35208 is in the sequence.
		

Crossrefs

Cf. A051347 (all solutions); A018850 (positive cubes); A293648 (only coprime); A293645, A293650

Programs

  • Maple
    g:= proc(s,n) local x;
      x:= s/2 + sqrt(12*n/s-3*s^2)/6;
      if not x::integer then return NULL fi;
      [x,s - x];
    end proc:
    filter:= proc(n)
      local pairs, i,j;
      pairs:= map(g, numtheory:-divisors(n),n);
      for i from 2 to nops(pairs) do
        for j from 1 to i-1 do
          if igcd(op(pairs[i]),op(pairs[j]))=1 then return true fi
      od od;
      false
    end proc:
    select(filter, [seq(seq(9*i+j,j=[1,2,7,8,9]),i=0..4000)]); # Robert Israel, Oct 22 2017
  • Mathematica
    g[s_, n_] := Module[{x}, x = s/2 + Sqrt[12*n/s - 3*s^2]/6;   If[!IntegerQ[x], Return[Nothing]]; {x, s - x}];
    filter[n_] := Module[{pairs, i, j}, pairs = g[#, n]& /@ Divisors[n]; For[i = 2, i <= Length[pairs], i++,For[j = 1, j <= i - 1, j++, If[GCD @@ Join[pairs[[i]], pairs[[j]]] == 1, Return[True]]]]; False];
    Select[Flatten[Table[Table[9*i + j, {j, {1, 2, 7, 8, 9}}], {i, 0, 4000}]], filter] (* Jean-François Alcover, May 28 2023, after Robert Israel *)

A293651 Sum of two (possibly negative) coprime cubes in at least 3 ways, but not the sum of 2 noncoprime cubes.

Original entry on oeis.org

3367, 68913, 152551, 195841, 625177, 684019, 1147627, 1548729, 2113921, 2628073, 2985983, 3242197, 3442887, 4488211, 4663295, 4931101, 5318677, 7194889, 8741691, 9667693, 14110579, 15072967, 15438185, 16776487, 21463407, 22910797, 24769502, 26122131, 26460217
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Not every term is cubefree; some are sb^3 where s is in A159843 and b > 1.

Examples

			21463407 = 271^3 + 116^3 = 284^3 - 113^3 = 368^3 - 305^3, and 271 & 116 are coprime, etc., so 21463407 is in the sequence.
		

Crossrefs

Cf. A023050 (positive cubes); A293650 (allows noncoprime); A293646, A293648

A293649 Sum of two coprime positive cubes in at least 2 ways, but not the sum of 2 non-coprime positive cubes.

Original entry on oeis.org

1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 14916727
Offset: 1

Views

Author

Rosalie Fay, Oct 16 2017

Keywords

Comments

Not every term is cubefree; some are sb^3 where s is in A159843 and b > 1.

Examples

			14916727 = 246^3 + 31^3 = 240^3 + 103^3 and 246 & 31 are coprime, as are 240 & 103, but it is not also the sum of cubes of 2 non-coprime positive integers, so 14916727 is in the sequence.
		

Crossrefs

Cf. A023050 (3 ways); A272885 (cubefree with positive cubes).
Cf. A159843, A293648 (allows negatives).

Programs

Showing 1-4 of 4 results.