cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293653 Young urn sequence (number of possible evolutions in n steps of the "Young" Pólya urn).

Original entry on oeis.org

1, 2, 6, 30, 180, 1440, 12960, 142560, 1710720, 23950080, 359251200, 6107270400, 109930867200, 2198617344000, 46170964224000, 1061932177152000, 25486372251648000, 662645678542848000, 17891433320656896000, 518851566299049984000, 15565546988971499520000, 498097503647087984640000
Offset: 0

Views

Author

Cyril Banderier, Feb 06 2018

Keywords

Examples

			We based the following explanations on Figure 1 from the Banderier et al. reference:
We have an urn with black and white balls in it.
At odd-numbered steps, we apply rule M1: we choose a ball, check its color, and add to the urn a ball of the same color.
At even-numbered steps, we apply rule M2: we choose a ball and check its color;
  if it is black, we add 1 white ball and 1 black ball;
  if it is white, we add 2 white balls.
At step 0, we start with the urn containing 1 black ball and 1 white ball (in short, 1b/1w). Accordingly, a(0)=1.
At step 1, we apply rule M1. This leads to 2 compositions: 2b/1w and 1b/2w. Accordingly, a(1) = 1 + 1 = 2.
At step 2, we apply rule M2. This leads to 3 compositions: 3b/2w, 2b/3w, and 1b/4w, each having multiplicity two. Accordingly, a(2) = 2 + 2 + 2 = 6. This leads to 4 compositions at step 3: 4b/2w (with multiplicity 6), and 3b/3w, 2b/4w, and 1b/5w (each of these last three with multiplicity 8). Accordingly, a(3) = 6 + 8 + 8 + 8 = 30.
		

Crossrefs

Cf. A123144.

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=(3/2)*a[n-1]+(9*(n-3)^2+21*n-51)/4*a[n-2]; od; a; # Muniru A Asiru, Dec 19 2018
  • Maple
    a:=proc(n) if n mod 2= 0 then 3^n /GAMMA(2/3) * GAMMA(n/2+2/3) * GAMMA(n/2+1);
    else 3^n /GAMMA(2/3) * GAMMA(n/2+7/6) * GAMMA(n/2+1/2);  fi; end:
    seq(a(n), n=0..30);
  • Mathematica
    f[n_] := FullSimplify[ 3^n/Gamma[2/3]*If[OddQ@ n, Gamma[n/2 + 7/6] Gamma[n/2 + 1/2], Gamma[n/2 + 2/3]Gamma[n/2 + 1]]]; Array[f, 20, 0] (* Robert G. Wilson v, Feb 07 2018 *)

Formula

a(n+2) = (3/2)*a(n+1) + (9*n^2+21*n+12)/4*a(n), a(0) = 1, a(1) = 2.
Also, a(2n+k) has a hypergeometric expression (for k=0,1, see Maple code below) (proved).