cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293660 Base-7 circular primes that are not base-7 repunits.

Original entry on oeis.org

11, 13, 17, 19, 23, 29, 37, 41, 43, 47, 79, 89, 97, 109, 131, 211, 233, 257, 263, 281, 307, 337, 439, 479, 509, 571, 619, 673, 677, 853, 941, 953, 977, 997, 1021, 1097, 1117, 1163, 1171, 1453, 1511, 1531, 1579, 1597, 1657, 1777, 1787, 1811, 1871, 1933, 1951
Offset: 1

Views

Author

Felix Fröhlich, Dec 30 2017

Keywords

Comments

Conjecture: The sequence is finite, with 13143449029 being the last term. - [Comment extended by Felix Fröhlich, May 30 2019]

Examples

			109 written in base 7 is 214. The base-7 numbers 214, 142, 421 written in base 10 are 109, 79, 211, respectively, and all those numbers are prime, so 79, 109 and 211 are terms of the sequence.
		

Crossrefs

Cf. base-b nonrepunit circular primes: A293657 (b=4), A293658 (b=5), A293659 (b=6), A293661 (b=8), A293662 (b=9), A293663 (b=10).

Programs

  • Mathematica
    With[{b = 7}, Select[Prime@ Range[PrimePi@ b + 1, 300], Function[w, And[AllTrue[Array[FromDigits[RotateRight[w, #], b] &, Length@ w - 1], PrimeQ], Union@ w != {1} ]]@ IntegerDigits[#, b] &]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
    is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1))))
    forprime(p=1, , if(vecmin(digits(p, 7))!=vecmax(digits(p, 7)), if(is_circularprime(p, 7), print1(p, ", "))))