A293670 Square array made of (W, N, S, E) quadruplets read by antidiagonals. Numeric structure of an anamorphosis of A002024 (see comments).
1, -1, 0, 2, 1, 0, 2, -1, 1, 2, 0, 3, 1, 1, 2, 0, 3, -1, 2, 2, 1, 3, 0, 4, 1, 2, 2, 1, 3, 0, 4, -1, 3, 2, 2, 3, 1, 4, 0, 5, 1, 3, 2, 2, 3, 1, 4, 0, 5, -1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 6, 1, 4, 2, 3, 3, 2, 4, 1, 5, 0, 6, -1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 6, 0, 7, -1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 8, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 7, 0, 8, -1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 8, 0, 9, -1
Offset: 1
Examples
Array begins (characterization)(x stands for -1): 1 x 0 2 1 0 2 x 1 2 0 3 1 1 2 0 3 x 2 2 1 3 0 4 1 2 2 1 3 0 4 x 3 2 2 3 1 4 0 5 1 3 2 2 3 1 4 0 5 x 4 2 3 3 2 4 1 5 0 6 1 4 2 3 3 2 4 1 5 0 6 x 5 2 4 3 3 4 2 5 1 6 0 7 1 5 2 4 3 3 4 2 5 1 6 0 7 x Or (definition)(to be read by antidiagonals): x x x x 1 2 2 3 3 4 4 5 ... 0 0 0 0 0 0 0 0 1 2 2 3 3 4 4 5 ... 1 1 1 1 1 1 1 1 1 2 2 3 3 4 4 5 ... 2 2 2 2 2 2 2 2 1 2 2 3 3 4 4 5 ... 3 3 3 3 3 3 3 3 1 2 2 3 3 4 4 5 ... 4 4 4 4 ...
Links
Programs
-
PARI
evolve(L,n)=if(n%2==1,listinsert(L,1,1);listinsert(L,-1,#L+1),L=apply(v->n/2-v,L));L N=30;L=List();for(n=1,N,L=evolve(L,n);for(i=1,#L,print1(L[i],", "));print())
Comments