cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A293694 Numbers z such that x^2 + y^8 = z^2 for positive integers x and y.

Original entry on oeis.org

20, 34, 65, 135, 320, 369, 544, 1040, 1095, 1305, 1350, 1404, 1620, 1625, 1746, 1971, 2056, 2160, 2379, 2754, 3060, 3281, 3996, 4100, 4470, 5120, 5265, 5904, 6625, 7825, 7830, 8194, 8575, 8704, 8796, 10250, 10935, 11125, 11700, 12500, 13154, 14500, 15579
Offset: 1

Views

Author

XU Pingya, Oct 16 2017

Keywords

Comments

Let i, j and k be nonnegative integers, m > n be positive integers. As ((m^2 - n^2)^(4*i+1) * (2*m*n)^(4*j+3) * (m^2 + n^2)^(4*k))^2 + ((m^2 - n^2)^i * (2*m*n)^(j+1) * (m^2 + n^2)^k)^8 = ((m^2 - n^2)^(4*i) * (2*m*n)^(4*j+3) * (m^2 + n^2)^(4*k+1))^2, so that the number of the form (m^2 - n^2)^(4*i) * (2*m*n)^(4*j+3) * (m^2 + n^2)^(4*k+1) is a term.
When (x, y, z) is a solution of x^2 + y^4 = z^2 (i.e., z = A271576(n)), (x^(4*i+1) * y^(4*j+2) * z^(4*k), x^i * y^(j+1) * z^k, x^(4*i) * y^(4*j+2) * z^(4*k+1)) is a solution of x^2 + y^8 = z^2.
When (x, y, z) is a solution of x^2 + y^6 = z^2 (i.e., z = A293690(n)), (x^(4*i+1) * y^(4*j+1) * z^(4*k), x^i * y^(j+1) * z^k, x^(4*i) * y^(4*j+1) * z^(4*k+1)) is a solution of x^2 + y^8 = z^2.
When (x, y, z) is a solution of x^2 + y^8 = z^2, (x^(4*i+1) * y^(4*j) * z^(4*k), x^i * y^(j+1) * z^k, x^(4*i) * y^(4*j) * z^(4*k+1)) is also a solution of x^2 + y^8 = z^2.

Examples

			12^2 + 2^8 = 20^2, 20 is a term.
63^2 + 2^8 = 65^2, 65 is a term.
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Count[n^2 - Range[(n^2 - 1)^(1/8)]^8, _?(IntegerQ[Sqrt[#]] &)] > 0; Select[Range[16000], z]

A293690 Numbers z such that x^2 + y^6 = z^2 for positive integers x and y.

Original entry on oeis.org

10, 17, 45, 80, 123, 136, 225, 234, 260, 270, 291, 325, 360, 365, 459, 510, 514, 640, 666, 745, 984, 1025, 1088, 1215, 1225, 1250, 1305, 1450, 1466, 1565, 1740, 1753, 1800, 1872, 1950, 1970, 2022, 2080, 2125, 2160, 2328, 2600, 2628, 2880, 2920, 3172, 3185
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Let i, j and k be nonnegative integers, m > n be positive integers. As ((m^2 - n^2)^(3*i+1) * (2*m*n)^(3*j+2) * (m^2 + n^2)^(3*k))^2 + ((m^2 - n^2)^i * (2*m*n)^(j+1) * (m^2 + n^2)^k)^6 = ((m^2 - n^2)^(3*i) * (2*m*n)^(3*j+2) * (m^2 + n^2)^(3*k+1))^2, so that the number of the form (m^2 - n^2)^(3*i) * (2*m*n)^(3*j+2) * (m^2 + n^2)^(3*k+1) is a term.
When (x, y, z) is a solution of x^2 + y^4 = z^2 (i.e., z = A271576(n)), (x^(3*i+1) * y^(3*j+1) * z^(3*k), x^i * y^(j+1) * z^k, x^(3*i) * y^(3*j+1) * z^(3*k+1)) is a solution of x^2 + y^6 = z^2.
When (x, y, z) is a solution of x^2 + y^6 = z^2, (x^(3*i+1) * y^(3*j) * z^(3*k), x^i * y^(j+1) * z^k, x^(3*i) * y^(3*j) * z^(3*k+1)) is also a solution of x^2 + y^6 = z^2.

Examples

			6^2 + 2^6 = 10^2, 10 is a term.
15^2 + 2^6 = 17^2, 17 is a term.
		

Crossrefs

Programs

  • Mathematica
    z[n_] := Count[n^2 - Range[(n^2 - 1)^(1/6)]^6, _?(IntegerQ[Sqrt[#]] &)] > 0; Select[Range[3200], z]

A293693 Numbers z such that x^2 + y^7 = z^2 (with positive integers x and y) and gcd(x, y, z) = 1.

Original entry on oeis.org

33, 1094, 2219, 4097, 6283, 39063, 40156, 69985, 78157, 82221, 148109, 411772, 412865, 450834, 524289, 526475, 602413, 823575, 827639, 893527, 1347831, 2391485, 2430547, 2500001, 2502187, 2803256, 3323543, 4783001, 4787065, 5307257, 7282969, 8957953, 9036077
Offset: 1

Views

Author

XU Pingya, Oct 14 2017

Keywords

Comments

Subsequence of A293692.

Examples

			31^2 + 2^7 = 33^2 and gcd(31, 2, 33) = 1, 33 is a term.
8879827^2 + 60^7 = 9036077^2 and gcd(8879827, 60, 9036077) = 1, 9036077 is a term.
		

Crossrefs

Programs

  • Mathematica
    z={};Do[If[IntegerQ[(n^2 - y^7)^(1/2)] && GCD[y,n]==1,AppendTo[z,n]],{n,9.7*10^6},{y,(n^2 - 1)^(1/7)}];z
Showing 1-3 of 3 results.