A293724 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} j^2*x^j).
1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 9, 25, 1, 1, 1, 9, 79, 241, 1, 1, 1, 9, 79, 457, 1041, 1, 1, 1, 9, 79, 841, 5901, 10681, 1, 1, 1, 9, 79, 841, 7821, 66841, 60649, 1, 1, 1, 9, 79, 841, 10821, 118681, 720259, 658785, 1, 1, 1, 9, 79, 841, 10821, 136681, 1782019
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 9, 9, 9, 9, ... 1, 25, 79, 79, 79, ... 1, 241, 457, 841, 841, ... 1, 1041, 5901, 7821, 10821, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k,n)} j^3*A(n-j,k)/(n-j)!.